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The Modern Description of Semileptonic Meson Form Factors
Richard J. Hill
Fermi National Accelerator Laboratory
P.O. Box 500, Batavia, IL 60510, U.S.A.

I describe recent advances in our understanding of the hadronic form factors governing semileptonic meson
transitions. The resulting framework provides a systematic approach to the experimental data, as a means of
extracting precision observables, testing nonperturbative field theory methods, and probing a poorly understood
limit of QCD.

1. Introduction: into the meson

Semileptonic transitions of one meson into an-
other yield important measurements of both weak and
strong dynamics. By comparing the experimentally
determined decay rate to a theoretical normalization
of the relevant hadron transition amplitude at one
or more kinematic points, elements of the Cabibbo-
Kobayashi-Maskawa (CKM) matrix are determined.
Independent of the overall normalization, the shape
of the semileptonic spectrum provides a quantitative
probe of underlying hadron dynamics.

Of the six CKM elements that can be probed di-
rectly using stable hadrons, determinations from ex-
clusive semileptonic transitions are the most precise
(|Vus|); competitive with other determinations (|Vub|,
|Vcb| from inclusive semileptonic B decays; |Vcd| from
deep-inelastic neutrino scattering; |Vcs| from charm-
tagged W decays); or complementary to existing de-
terminations (|Vud|, from nuclear beta decay) [1]. In
all cases, the theoretical normalization gives a domi-
nant error. The experimentally determined spectrum
can be used both to test the nonperturbative methods
used in determining this normalization, and to opti-
mize the merger of theory with experiment.

For the study of hadron dynamics, the use of a vir-
tual W boson probe in semileptonic transitions can be
viewed in analogy with the use of a virtual photon in
deep-inelastic scattering. The “known” and theoret-
ically “clean” weak (electromagnetic) physics is used
to probe the “unknown” and theoretically “messy”
strong physics of the meson (proton). For the case
of semileptonic transitions, in addition to the virtu-
ality of the exchanged boson, we can envision “dial-
ing the knobs” of the initial- and final-state meson
masses. To be precise, consider the situation pictured
in Fig. 1. A Qq̄ pair with quantum numbers of the
“heavy” meson H is created at spacetime point x, in-
teracts with a flavor-changing current at y, and the
q′q̄ pair with quantum numbers of the “light” meson
L is annihilated at z. By suitable manipulations 1,

1Fourier transform, x → p, z → p′, and tune p2 → m2
H

,

we can extract hadronic transition amplitudes (form
factors) from this correlation function. The entire pro-
cess takes place in the complicated QCD background
with soft and hard gluons interacting with everything,
qq̄ pairs popping out of the vacuum, etc. On this
fixed background, we can compute a correlation func-
tion with any quark masses we desire; in fact Nature
has chosen a few fixed values (and presumably ob-
tained the correct answer), and we shall be content
with these. 2

q′

q̄

Q

p′µ

qµ

pµ

Figure 1: Correlation function from which the
semileptonic form factors are extracted. Q, q′ and q are
quark labels. pµ, p′µ and qµ are momenta.

In this way, a rather complete exploration of the
“1-body” semileptonic topology, summarized by in-
variant form factors F (mH , mL, q2), is possible. A
similar analysis can be applied to “0-body” leptonic
decays, and to “2-body” hadronic decays. The for-
mer case is rather simple: by kinematics there is only
the single “knob” of the meson mass, and the result
is summarized by a single number, the decay con-
stant f(mH). The latter case is rather complicated,
with many different topologies contributing to a typ-
ical physical process [2].

The remainder of the talk is organized as follows.
Section 2 reviews the first-principles knowledge we

p′2 → m2
L

2(Unquenched) lattice simulations study essentially the same
object. However, in contrast to the fixed background described
here, the “valence” quark masses injected by the currents are
coupled to the dynamical “sea” quark masses. When extrapo-
lated to the physical masses, the results must of course be the
same.
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Table I Maximum |z(t, t0)| throughout semileptonic

range with symmetrizing choice t0 = t+(1−
√

1 − t−/t+).

Process CKM element |z|max

π+ → π0 Vud 3.5 × 10−5

B → D Vcb 0.032

K → π Vus 0.047

D → K Vcs 0.051

D → π Vcd 0.17

B → π Vub 0.28

have about the form factors, following just from kine-
matics without dynamics. Pseudoscalar-pseudoscalar
transitions between “heavy-light”, nonsinglet mesons
are particularly simple and are the main focus. 3

Rigorous power-counting arguments provide the basis
for a powerful expansion based on analyticity. Sec-
tion 3 illustrates how the experimental data is simpli-
fied by making use of this expansion. In particular,
we find the remarkable conclusion that in terms of
standard variables, no semileptonic meson form fac-
tor has ever been observed to deviate from a straight
line. Given that the form factors are indistinguishable
from straight lines, if the shape of the semileptonic
spectrum is to provide insight on QCD, it must be
through the slope of the form factor; in fact, a clear
but unsolved question in QCD translates directly into
the numerical value of this slope in an appropriate
limit, as described in Section 4. Phenomenological
implications in the B → π system are considered in
Section 5. The methodology described here provides
a convenient framework in which to understand pre-
cisely what measurements in the charm system can,
and cannot, say that is relevant to the bottom sys-
tem, as discussed in Section 6. Section 7 outlines the
extension to pseudoscalar-vector transitions.

2. Analyticity and crossing symmetry

An oft-cited downside of old and well-known
dispersion-relation arguments is that the results are
too general, and do not make specific predictions for
detailed dynamics. In fact, precisely these properties
make them useful to the problem at hand—it is essen-
tial to make some statement on the possible functional
form of the form factors, yet we do not want to make
assumptions, explicit or implicit, on the dynamics.

The analytic structure of the form factors can be

3The nonsinglet restriction ensures that only a single topol-
ogy is relevant as in Figure 1.

zt

Figure 2: Mapping (3) of the cut t plane onto the unit
circle. The semileptonic region is represented by the blue
line.

investigated by standard means. 4 Let us focus on
the form factors for pseudoscalar-pseudoscalar transi-
tions, defined by the matrix element of the relevant
weak vector current, (q ≡ p − p′)

〈L(p′)|V µ|H(p)〉
= F+(q2) (pµ + p′µ) + F−(q2)qµ

= F+(q2)

(

pµ + p′µ − m2
H − m2

L

q2
qµ

)

+F0(q
2)

m2
H − m2

L

q2
qµ . (1)

To ensure that there is no singularity at q2 = 0, the
form factors obey the constraint

F+(0) = F0(0) . (2)

Ignoring possible complications from anomalous
thresholds or subthreshold resonances, to be discussed
below, the form factors F (t = q2) can be extended
to analytic functions throughout the complex t plane,
except for a branch cut along the positive real axis,
starting at the point t = t+ [t± ≡ (mH ±mL)2] corre-
sponding to the threshold for production of real H̄L
pairs in the crossed channel. By a standard transfor-
mation, as illustrated in Figure 2, the cut t plane is
mapped onto the unit circle |z| ≤ 1,

z(t, t0) ≡
√

t+ − t −√
t+ − t0√

t+ − t +
√

t+ − t0
, (3)

where t0 is the point mapping onto z = 0. The iso-
lation of the semileptonic region from singularities in
the t plane implies that |z| < 1 throughout this re-

gion. Choosing t0 = t+(1 −
√

1 − t−/t+) minimizes
the maximum value of |z|; for typical decays these
maximum values are given in Table I.

Since the form factor is analytic, it may be ex-
panded,

F (t) =
1

P (t)φ(t, t0)

∞
∑

k=0

ak(t0)z(t, t0)
k , (4)

4For a general discussion, see e.g. [3]. For early work on
applications to semileptonic form factors, see [4, 5, 6, 7, 8, 9, 10].
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where P and φ will be explained shortly. From Ta-
ble I, it is apparent that if some control over the coef-
ficients ak can be established, the expansion is rapidly
convergent.

To bound the coefficients appearing in (4), we con-
sider the norm,

||F ||2 ≡
∞
∑

k=0

a2
k =

1

2πi

∮

dz

z
|PφF |2

=
1

π

∫ ∞

t+

dt

t − t0

√

t+ − t0
t − t+

|PφF |2 . (5)

By crossing symmetry, the norm can be evaluated us-
ing the form factors for the related process of H̄L
production.

2.1. Subthreshold poles, (absence of)
anomalous thresholds, and a choice of P

For some hadronic processes, it may happen that
subthreshold resonances occur in the production am-
plitude, which must be properly taken into account.
Particles lying below threshold are hadronically sta-
ble, so that ignoring higher-order weak and electro-
magnetic corrections, they are described by simple
poles. The canonical example is the B∗ pole appear-
ing in the vector channel for B → π. Such poles could
in principle be simply subtracted, but doing so re-
quires knowledge of the relevant coupling appearing
as the coefficient of 1/(m2

B∗ − t) in the dispersive rep-
resentation of the form factor. Armed with only the
knowledge of the pole position, this pole can instead
be removed by multiplying with a function P (t) with
a simple zero at m2

B∗ . Requiring also that the func-
tion satisfy |P | = 1 along the cut, up to an arbitrary
phase,

PB→π
F+

(t) = z(t, m2
B∗) , (6)

with z as in (3).
It may happen in some processes that “anoma-

lous thresholds” appear. The relevant aspects of this
technical subject can be summarized as follows: an
anomalous threshold can occur in the spacelike region,
t < 0, only if H and L are unstable, i.e., mH or L >
mX + mY for some hadrons X and Y coupling to H
or L. Similarly, an anomalous threshold can occur in
the timelike region, t− < t < t+, only if m2

H or L >
m2

X + m2
Y . 5 This explains the priveleged position of

5In geometrical language, this can be related to the state-
ment that a triangle cannot have more than one obtuse an-
gle [3]. Strictly speaking, for “heavy-to-heavy” transitions such
as D → K and B → D, additional Zweig-suppressed topologies
can also lead to anomalous thresholds, related to processes such

ground-state heavy-light pseudoscalar mesons. The
ground state meson with given flavor quantum num-
bers is necessarily pseudoscalar [11]. The mesons H
and L are therefore the lightest hadrons containing
their respective “heavy” quarks, so that in particular
mH or L < mX + mY and m2

H or L < m2
X + m2

Y for any
hadrons X and Y containing the same heavy quark. 6

(For the present purposes, this can be taken as the
definition of a “heavy-light” meson.) Fortunately, and
for related reasons, these mesons are easily produced
and studied experimentally, and in lattice simulations.

2.2. Unitarity and a choice of φ

Nothing in (4) or (5) yet singles out a choice of φ;
indeed any analytic function will work, (of which there
are many!). A default choice is determined from argu-
ments based on unitarity: by an appropriate choice of
φ, the norm can be identified as a partial rate for some
inclusive process that is perturbatively calculable. In
particular, from

Πµν(q) ≡ i

∫

d4x eiq·x〈0|T
{

V µ(x)V ν†(0)
}

|0〉

= (qµqν − gµνq2)Π1(q
2) + qµqνΠ0(q

2) ,(7)

unsubtracted dispersion relations can be written for
the quantities (Q2 = −q2)

χF+
(Q2) =

1

2

∂2

∂(q2)2
[

q2Π1

]

=
1

π

∫ ∞

0

dt
tImΠ1(t)

(t + Q2)3
,

χF0
(Q2) =

∂

∂q2

[

q2Π0

]

=
1

π

∫ ∞

0

dt
tImΠ0(t)

(t + Q2)2
.

(8)

Noticing that for t > t+, (η an isospin factor)

η

48π

[(t − t+)(t − t−)]3/2

t3
|F+(t)|2 ≤ ImΠ1(t) ,

ηt+t−
16π

[(t − t+)(t − t−)]1/2

t3
|F0(t)|2 ≤ ImΠ0(t) ,(9)

shows that an upper bound on the norm can be es-
tablished by choosing [recall that |z| = 1 along the
integration contour in (8)]

φF+
(t, t0) =

√

η

48π

t+ − t

(t+ − t0)1/4

(

z(t, 0)

−t

)

as D∗+
s → D+

s π0. As indicated by the small branching frac-
tion, such effects are highly suppressed; for further discussion
and references, see Section 7.

6The same is not true for “heavy-heavy” systems; e.g. a QQ̄
pair has mass ∼ (2mQ)2 ∼ 4m2

Q
, compared to m2

Q
+ m2

Q
∼

2m2
Q

for a pair of (Qq̄) mesons.
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×
(

z(t,−Q2)

−Q2 − t

)3/2 (

z(t, t0)

t0 − t

)−1/2

×
(

z(t, t−)

t− − t

)−3/4

,

φF0
(t, t0) =

√

ηt+t−
16π

√
t+ − t

(t+ − t0)1/4

(

z(t, 0)

−t

)

×
(

z(t,−Q2)

−Q2 − t

) (

z(t, t0)

t0 − t

)−1/2

×
(

z(t, t−)

t− − t

)−1/4

. (10)

The choice of subtracted dispersion relation in (8)
leads to a “default” choice for φ in (10). With
this choice, power counting shows that ak/a0 and
∑

k(a2
k/a2

0) do not scale as powers of large ratios such
as Q/ΛQCD, or mQ/ΛQCD when a heavy-quark mass
is present [53]. This ensures that there is no paramet-
ric enhancement of the coefficients ak that could offset
the smallness of zk in the series (4). In fact, at suffi-
ciently large k the coefficients must decrease in order
that the sum of squares converge. These properties
[analyticity, and ak/a0 ∼ ∑

k a2
k/a2

0 ∼ O(1) ] are all
that is required from the choice of φ. The “physical”
prescription following from (8), (9) and (10) automat-
ically ensures that this is the case.

The original motivation for considering the operator
product expansion (OPE) in (7) is to place a restric-
tion on the coefficients in (5) according to (χ = χF+,0

as appropriate)

∞
∑

k=0

a2
k ≤ χ(Q2) . (11)

However, in order that an OPE expansion for χ(Q2)
converge, Q2 (or m2

Q + Q2 when a heavy-quark is

present) must necessarily be large compared to ΛQCD.
This results in a bound that is typically overestimated
by some power of the large ratio of perturbative to
hadronic scales. In practice, the numerical value for
the bound (11) itself is largely irrelevant. What is im-
portant is that the choice of φ which it motivates has
the desired properties.

Having chosen a “default” φ, for definiteness, we
will also take Q = 0 in (10) as the “default” choice,
and where a particular choice is necessary, t0 = t+(1−
√

1 − t−/t+).

3. What the data say

Table I can be used to predict the level of precision
at which slope, curvature, and higher-order correc-
tions can be resolved by the data. With the “default”
values of Q and t0, Table II shows the results for a1/a0

obtained from data. Except where indicated, modes

)
2

t (GeV
0 10 20

+
F

0

5

10 BABAR

-z
-0.2 0 0.2

+
 Fφ

P
 

0

1

2

3

Figure 3: Experimental data for F+ in B → πℓν, as a
function of t, and for the function PφF+ as a function of
z. Partial branching fractions have been converted to
values of the form factor at the midpoint of each bin in t
from [12]. Units on the vertical axis are arbitrary
(approximately normalized to unity at t = 0).

related by isospin are combined. For the K → π
case, the results of [14, 15, 16, 17] were presented as a
simple quadratic Taylor expansion of the form factor
about t = 0. 7 These results have been converted to
the quadratic z parameterization in (4), by identifying
the Taylor series at t = 0, and propagating errors lin-
early. For B → D, the results of [13] were presented
in terms of a parameterization obtained by expand-
ing φ and P as a Taylor series in z [9]. The result in
Table II is obtained by converting to the linear z pa-
rameterization in (4), with three subthreshold “B∗

c ”
poles located at m = 6.337, 6.899, 7.012 GeV [9, 24],

7It is desirable to fit the data directly to (4), to avoid biases
introduced by the truncated t series [23].
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Table II Linear expansion coefficient a1/a0 from (4) at

t0 = t+(1 −
√

1 − t−/t+) and Q = 0.

Process a1/a0 Reference

B → D −2.6 ± 2.3 [13]

K+ → π0 −0.2 ± 0.2 [14]

KL → π± −0.5 ± 0.2 [15]

0.0 ± 0.3 [16]

−0.2 ± 0.2 [17]

D → K −2.7 ± 0.5 ± 0.4 [18]

−2.2 ± 0.4 ± 0.4 [19]

−3.2 ± 0.5 ± 0.2 [20]

D → π −2.3 ± 0.7 ± 1.3 [18]

−1.6 ± 0.5 ± 1.0 [20]

B → π −1.3 ± 0.6 ± 2.3 [21]

−1.9 ± 0.3 ± 1.1 [12]

−1.3 ± 0.8 ± 2.2 [22]

and then identifying the coefficients in a Taylor series
at t = t+(1 −

√

1 − t−/t+). The results for D → K,
D → π and B → π were obtained by fitting the linear
z parameterization in (4) to the data. A second error
is included by redoing the fits with the quadratic z
parameterization, subject to the conservative bound
|ak/a0| < 10. Due to the smallness of z for pion beta
decay, π+ → π0 (cf. Table I), the slope in this case is
orders of magnitude from being measured experimen-
tally [25].

At least through linear order, there is no evidence
of anomalously large coefficients that could upset the
power counting. While it would be desirable to push
to the next order and examine the size of a2/a0, com-
parison to data establishes the remarkable conclusion
that form-factor curvature has not yet been seen in
any semileptonic transition. In fact, for many cases,
a form factor slope has yet to be measured. An ex-
ample of the transformed form factor is illustrated for
B → π in Fig. 3.

From the amusing coincidence that zDK/zDπ ∼
|Vcd|/|Vcs|, and zBD/zBπ ∼ |Vub|/|Vcb|, it turns
out that the higher statistics of the Cabibbo-allowed
modes (B → D, D → K) are offset at linear order
by the smallness of z. It is thus likely that curva-
ture will eventually be measured first in the Cabibbo-
suppressed modes (B → π, D → π).

The results in Table II are by no means the fi-
nal word on these quantities, but illustrate the main
point, that there is no sign that the z expansion is
breaking down. It is also easy to see that unitarity has
very little impact. For example, for B → π, the bound
on F+ taken from the OPE at Q = 0 is overestimated
by a factor ∼ (mb/ΛQCD)3 [53]. Taking for definite-
ness, F+(t0 = 16 GeV) ≈ 0.8, the unitarity bound
tells us only that

∑

k a2
k/a2

0
<∼ 2500 [6, 26, 27]. For

B → D, at Q = 0 with the approximate symmetry re-
lation F+(t−) ≈ (mB+mD)/2

√
mBmD, and including

three subthreshold poles as in (6), the unitarity bound
is overestimated by a factor ∼ (mb/mc)

3 and yields
∑

k a2
k/a2

0
<∼ 9000 [6, 9]. While these bounds can be

improved somewhat by subtracting off subthreshold
poles, extending isospin SU(2) to SU(3) flavor sym-
metry, or by lowering Q2, all of these modifications
introduce their own uncertainties. 8

4. A fundamental question

Given that the form factors (after extracting stan-
dard kinematic factors, and expressing them in terms
of the appropriate standard variable) are so far indis-
tinguishable from a straight line, it is apparent that
any insight to be gained from the shape of the form
factors, whether it be tests of nonperturbative meth-
ods, inputs to other processes, or more fundamental
questions about QCD, must be based in first approx-
imation on the slope of the form factor. In fact, this
quantity does provide a clear test of lattice QCD, is an
important input to hadronic B decays, and in an ap-
propriate limit can provide the answer to a longstand-
ing open question about the QCD dynamics governing
form factors.

It is convenient to define the physical shape observ-
ables in terms of the form factor slopes at t = 0 [28],

1

β
≡ m2

H − m2
L

F+(0)

dF0

dt

∣

∣

∣

∣

t=0

,

δ ≡ 1 − m2
H − m2

L

F+(0)

(

dF+

dt

∣

∣

∣

∣

t=0

− dF0

dt

∣

∣

∣

∣

t=0

)

≡ F+(0) + F−(0)

F+(0)
. (12)

The quantities β and δ depend only on the masses
of the mesons involved. 9 Being physical quantities,
they are independent of any renormalization scale or
scheme. As discussed in the introduction, these quan-
tities take definite values for all mH and mL, values
that are accessible experimentally at the fixed masses
mπ, mK , mD and mB. 10

8For modes such as B → D, the incredible smallness of z,
and the judicious use of heavy-quark symmetry, allows even
very conservative unitarity bounds to guarantee few-percent
level accuracy by keeping only the linear term in (4) [5, 8].

9Recall that we consider mesons with a fixed light spectator
quark, which for simplicity in the discussion is assumed mass-
less. The meson mass is therefore in one-to-one correspondence
with the heavy (non-spectator) quark mass.

10For some studies of δ − 1 ≡ F−(0)/F+(0), also called ξ(0),
in the early literature of light-meson form factors, see the re-
view [29]. The positive sign for ξ(0) predicted in a number of
models, e.g. [30, 31], is in disagreement with current data. For

fpcp06 324
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Due to the kinematic constraint (2), the difference
of form factor slopes is particularly simple. Firstly,
for mH = mL,

δ(mL, mH) = 1 , [mH = mL] . (13)

This is the statement of current conservation (F− = 0)
in (1). There are three further distinct limits that we
can consider: mH , mL ≫ ΛQCD, mH , mL ≪ ΛQCD,
and mH ≫ ΛQCD ≫ mL. Each limit provides valu-
able insight, and we consider each in turn.

4.1. mH , mL ≫ ΛQCD: HQET

  ( GeV )Lm
0 2 4

δ

-1

0

1

2

Figure 4: δ as a function of light-meson mass for fixed
heavy-meson mass mH = mB. The shaded band gives
the prediction from HQET valid for mH

>
∼ 1GeV. The

dot with error bars is from experimental data as
discussed in the text.

For mH , mL ≫ ΛQCD, it is convenient to express
the form factors F± in terms of reduced amplitudes,
h± where the dominant heavy-quark mass dependence
is extracted: [cf. (1)]

F+(p + p′) + F−(p − p′)

≡ √
mHmL [h+(v + v′) + h−(v − v′)] , (14)

where the meson velocities are mHv ≡ p, mLv′ ≡ p′.
With these definitions, before any approximation,

δ(mL, mH) ≡ 2mL

mH + mL

1 + h−

h+

1 − mH−mL

mH+mL

h−

h+

. (15)

some early work on heavy-to-light meson form factors, see [32].
The prediction limmB→∞ δ(mπ , mB) = 2 of [32] also appears
difficult to reconcile with present data, see below.

At leading power, h+ ≈ ξ, the universal Isgur-Wise
function [33], and h− ≈ 0, so that

δ(mL, mH) =
2mL

mH + mL

[

1 + O(αs, Λ/mL, Λ/mH)
]

,

[

mH , mL ≫ Λ
]

. (16)

Radiative and power corrections to h± can be ana-
lyzed systematically with heavy-quark effective field
theory (HQET) [34]. From (16), we see that in the
regime where mH , mL ≫ ΛQCD, δ can take any value
between zero and unity. 11 For fixed mH = mB, Fig. 4
shows the allowed range of δ in the regime of mL

where this expansion is applicable. Results for sub-
leading corrections are taken from [34], with errors
estimated by varying the renormalization scale by a
factor of two, and assigning 100% uncertainty to the
power corrections. The data point for B → π is from
(23).

4.2. mH , mL ≪ ΛQCD: CHPT

  ( GeV )Hm
0 2 4 6

δ

-1

0

1

2

Figure 5: δ as a function of heavy-meson mass for fixed
light meson mass mL = mπ. The shaded band gives the
prediction from CHPT valid for mH

<
∼ 1GeV. Dots with

error bars are experimental data as discussed in the text.

For mH , mL ≪ ΛQCD, the form factors can be ex-
panded in powers of the small ratios of masses and
momenta relative to the QCD scale (since the energies
involved in semileptonic transitions are bounded by
meson masses). In this regime of Chiral Perturbation

11Since we are considering quantities at maximum recoil, the
large recoil parameter, (v · v′)max = (m2

H
+ m2

L
)/2mLmH , can

upset the power counting when mH → ∞ at fixed mL. For arbi-
trarily small mL/mH , the limiting value δ = 2mL/(mH + mL)
is obtained in the limit where mL → ∞, mH → ∞, mL/mH =
constant.

fpcp06 324
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Theory (CHPT) [35, 36], 1 − δ is of order m2/Λ2
QCD.

The leading contribution is given by

δ(mL, mH)

= 1 − 2(m2
H − m2

L)

F 2
0

[

Lr
9(µ) − 2Lr

5(µ) + . . .
]

,

[

mH , mL ≪ Λ
]

, (17)

where the ellipsis denotes a known kinematic function
which cancels the renormalization-scale dependence of
the low-energy constants Lr

5,9(µ). Here F0 ∝ fπ is re-
lated to the pion decay constant. The deviation of δ
from unity is predicted by the sign of the combina-
tion Lr

9 − 2Lr
5, which is empirically found to be pos-

itive. The band in Fig 5 shows the allowed range of
δ, where for illustration we take [36] F0 = 0.088 GeV,
103Lr

5(mη) = 2.2 ± 0.5 (determined from the ratio
fK/fπ) and 103Lr

9(mη) = 7.4 ± 0.7 (determined from
the electromagnetic charge radius of the pion). The
value of δ for K0 → π+ is taken from [15]. 12 The
data point for D → π is discussed in Section 6, and
the data point for B → π is the same as in Fig. 4.

4.3. mH ≫ Λ >∼ mL: SCET

  ( GeV )Lm
0 0.5 1 1.5 2

 (
 G

eV
 )

H
m

0

0.5

1

1.5

2

 = 1
δ

 =
 0.

9

δ

 =
 0

.8

δ?

Figure 6: Contours of constant δ in the mL − mH plane.

The HQET description in Section 4.1 breaks down
when the light meson becomes light (Fig. 4). Simi-
larly, the CHPT in Section 4.2 breaks down when the
heavy meson becomes heavy (Fig. 5).

In this regime, since we are concerned with the
point at maximum recoil, the light-meson energy nec-
essarily satisfies E ∼ mH/2 ≫ ΛQCD. Observables

12The slope parameters there are related to those in (12) by
1 + 1/β − δ ≈ λ+(m2

K
− m2

π)/m2
π , 1/β ≈ λ0(m2

K
− m2

π)/m2
π .

can thus be analyzed using a simultaneous expansion
in Λ/mH and Λ/E. The soft-collinear effective the-
ory (SCET) framework has been developed to study
this regime [37, 38, 39, 40, 41]. The leading descrip-
tion of the form factors for pseudoscalar-pseudoscalar
transitions is, up to corrections of order αs(mH) and
Λ/mH ∼ Λ/E, [28, 42, 43, 44, 45, 46, 47]

F+(E) =
√

mH

[

ζ(E) +

(

4E

mH
− 1

)

H(E)
]

,

mH

2E
F0(E) =

√
mH

[

ζ(E) + H(E)
]

, (18)

where it is more natural to work here in terms of the
light-meson energy, related to the invariant momen-
tum transfer t in (1) by t = m2

H + m2
L − 2mHE.

The construction of SCET is more intricate than ei-
ther HQET or CHPT, due to the nonfactorization
of large and small momentum modes in some pro-
cesses [48, 49]. 13 Apart from scaling violations related
to this phenomenon, the functions ζ and H both have
an energy dependence ζ ∼ H ∼ E−2.

From expression (18) it is straightforward to see
that, independent of any model assumptions, [28]

1

β
= − d ln(ζ + H)

d lnE

∣

∣

∣

∣

E=mH/2

− 1 + O(αs, Λ/mH) .

(19)
From the 1/E2 asymptotic behavior of ζ and H , 1/β
should approach unity as mH → ∞ at fixed mL

<∼
ΛQCD. Similarly,

δ(mL, mH) =
2H

ζ + H

∣

∣

∣

∣

E=mH/2

+ O(αs, Λ/mH) ,

[

mH ≫ Λ >∼ mL

]

. (20)

Thus the question of the asymptotic limit,
limmH→∞ δ(mL, mH), is the same as the ques-
tion of which contribution, the “hard” function H , or
the “soft” function ζ, dominates in this limit.

The results summarized by (16), (17) and (20), can
be unified as in Fig. 6, which displays three equal-δ
contours in the HQET and CHPT regimes. The obvi-
ous question is: what happens to these contours as we
pass outside of these regimes? We know that δ can-
not depend strongly on mH , since this dependence is
due solely to scaling violations and power corrections.
A smooth chiral limit of the form factors also implies
that δ cannot depend strongly on mL. To further con-
strain these contours, experimental data can be used
as a quantitative probe in this regime.

13For explorations along different lines, see [45, 50].
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5. Implications for phenomenology

We focus attention on the prototypical heavy-light
process, B → πℓν. The methodology described in
Section 2 can be used to extract as much information
from experimental and lattice data as possible, with
believable error estimates.

5.1. Precision measurements: Vub
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Figure 7: Experimental error on |Vub|, with theoretical
input of the form factor normalization at a given value of
t, from [53]. The plot assumes that the fit yields the
central value |Vub| = 3.7 × 10−3.

Knowing that the true form factor is given by one
of the restricted class of curves in (4) allows for maxi-
mal use of the available experimental 14 and lattice 15

data. Figure 7 shows the minimum error obtainable
for |Vub| using present data [12, 21, 22, 52], with a
form factor determination at a given value of t [53].
The dark, medium and light bands correspond to in-
creasing levels of conservatism for the size of the co-
efficients appearing in (4):

∑

k a2
k = 0.01, 0.1, 1, nor-

malized relative to the default unitarity bound. At
the point t0 = 16 GeV2, these values correspond to
∑

k a2
k/a2

0 ≈ 25, 250, 2500.
As Fig. 7 illustrates, theory inputs at either very

large or very small t are not as effective as for moder-
ate values, say t = 10−20 GeV2, which are within the
range currently studied with unquenched lattice simu-
lations [54, 55, 56]. For extreme values of the bounds,
e.g., allowing coefficients in the expansion (4) to be as
large as ak/a0 ∼ 50, the error begins to increase, as
the lighter bands in the figure show.

For consistency, the heavy-quark power counting
used to establish bounds on the form factor shape
should be at least as robust and conservative as similar

14For the status of B → πℓν measurements see [51]
15For recent reviews and references for lattice form factor

determinations see [57, 58].

estimates used to bound other theoretical errors en-
tering a |Vub| determination—e.g. power corrections,
perturbative matching corrections, or discretization
errors in lattice calculations of the form factor. Quan-
titative investigations such as in Table II and Section 6
give us confidence that as far as the bounds are con-
cerned, “order unity” really means order unity.

5.2. Inputs to hadronic B decays

Semileptonic decays provide a robust value for the
form factor normalization (times |Vub|), a key input
to factorization analyses of two-body hadronic de-
cays [59, 60, 61, 62]. From [53], 16

103|VubF+(0)| = 0.92 ± 0.11 ± 0.03 . (21)

A dominant uncertainty in many factorization pre-
dictions is the normalization of the hard-scattering
contribution to the form factor, commonly expressed
in terms of an (inverse) moment of the B meson wave-
function, λB:

δ(mπ , mB) =
6πCF

Nc

fBfπαs

mBλBF+(0)
+ . . . . (22)

For example, the “default scenario” inputs of [63] give
δ ≈ 0.15+0.10

−0.05, while the “S2 scenario” gives a central

value δ ≈ 0.29. 17 The semileptonic data can help
pin down this number. From [53], using experimental
data for F+ from [12, 21, 22, 52] determines

B → π :

1 + 1/β − δ = 1.5 ± 0.6 ± 0.4 , (23)

and the lattice value β = 1.2±0.1 from [54, 55] allows
extraction of δ.

If δ is monotonic as a function of mL, the analysis
of Section 4.1 shows that

δ(mL, mB) < 0.35±0.03 ,
[

mL < 1 GeV; monotonicity
]

.
(24)

A significantly larger value of δ, e.g. δ ∼ 1 [65, 66, 67],
would require a dramatic behavior of the extrapolated
curve in Fig. 4.

16This may be compared to the bound [63] 103|VubF+(0)| <
1.22 obtained from an assumption of form-factor mono-
tonicity and experimental data in [21], and the value [64]
103|VubF+(0)| = 0.83 ± 0.16 obtained from fits of model pa-
rameterizations to the same data.

17Values are at tree level, αs(
√

mbΛ) ≈ 0.35, asymptotic dis-
tribution amplitude for the pion, and the errors shown are from
the remaining inputs used in [63].
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6. What’s charm got to do with it?

Charm decays provide a direct probe of the “in-
teresting” regime pictured in Fig. 6. They provide
an important test of lattice measurements for heavy-
to-light form factors, and a quantitative test of the
power-counting used to bound the form factor shape
in other processes such as B → π.

6.1. Fundamental questions

  ( GeV )Lm
0 2 4

δ

-1

0

1

2

Figure 8: δ as a function of light-meson mass. The
upper (black) points are for fixed mH = mD, and the
lower (red) points for fixed mH = mB.

Depending on whether the soft or hard component
of the form factor dominates in the limit mH → ∞,
the difference in form factor slopes (12) tends to δ → 0
or δ → 2. The latter would require that the curves
such as in Fig. 4 turn upward at small mL, for suffi-
ciently large mH . If this happens, and unless a new
large scale is dynamically generated by QCD, at which
a turnaround in the curves would occur, some evi-
dence for this behavior should be evident in the charm
system. Precision measurements here directly probe
the dangerous region illustrated in Fig 6. For D → K
decays,

D → K :

1 + 1/β − δ = 1.03 ± 0.09 ± 0.11 [18]

0.94 ± 0.07 ± 0.10 [19]

1.13 ± 0.10 ± 0.12 [20] .(25)

Here the first error is experimental using the linear
z parameterization (just a0, a1) in (4). The second
error is a conservative estimate of the residual shape
uncertainty, obtained by allowing an extra parameter
in the fit (a0, a1 and a2), with |ak/a0| <∼ 10. Combin-
ing this with the lattice value β = 1.8± 0.1 yields the
D → K data point in Fig. 8.

Similarly for D → π decays,

D → π :

1 + 1/β − δ = 1.3 ± 0.4 ± 0.5 [18]

0.9 ± 0.2 ± 0.3 [20] , (26)

with the errors as above. Combined with the lattice
value β = 1.65 ± 0.10 yields the D → π data point in
Fig. 5 and Fig. 8.

Our current combined knowledge of form factor
shape from B and D decays is illustrated in Fig. 8.
So far the data do not indicate surprises in either of
the curves when extrapolated into the region mL

<∼
1 GeV. It will be interesting to probe this region with
more precision when further data becomes available.

6.2. Lattice, experiment and
parameterizations

Charm decays provide important tests of nonper-
turbative methods used to evaluate hadronic matrix
elements. When comparing the results of lattice QCD
with experiment, it should be kept in mind that the
kinematic regions that are studied with best precision
are different for the lattice (large t) and experiment
(small t). Also, the manner in which chiral extrap-
olations are performed to reach physical light-quark
masses imply that it is difficult to present lattice re-
sults in terms of uncorrelated values of the form factor
at different t values. In practice, the results are gen-
erally presented in terms of a parameterized curve;
to make a definitive comparison to experiment, it is
essential that the chosen parameterization doesn’t in-
troduce a bias. The ideas described in Section 2 allow
a systematic approach to this problem [58]. The re-
mainder of this subsection points out pitfalls that can
occur with some of the simplified parameterizations
in common use.

The starting point for many parameterizations is a
more pedestrian but rigorous approach to analyticity,
which implies the dispersion relation:

F+(t) =
F+(0)

1 − α

1

1 − t/m2
H∗

+
1

π

∫ ∞

t+

dt′
ImF (t′)

t′ − t
,

(27)
where a distinct mH∗ pole appears below threshold
for heavy-to-light decays such as B → π and D → K
(and almost for D → π). The first interesting test
is to see whether just the mH∗ pole can describe the
data,

vector dominance :

F+(t) =
F+(0)

1 − t/m2
H∗

.

(28)
In fact this “vector dominance” model can be explic-
itly ruled out by the data [12, 18, 19, 20, 20, 21, 22], so
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that inclusion of the continuum contribution in (27)
is essential.

From a dynamical point of view, in order to ob-
tain the 1/E2 dependence appearing in heavy-to-light
form factors, as in (18), it is necessary that the con-
tinuum integral in (27) play a significant role. This
can be treated in a model independent way by break-
ing up the integral into a sum of effective poles,
and using power-counting estimates to establish rea-
sonable bounds on the coefficients of these effective
poles [28, 53]. In the first approximation, the contin-
uum integral is represented by a single effective pole,
and two parameters are necessary to describe its loca-
tion and strength relative to the H∗ pole. Since this is
one more parameter than is easily measured from the
data, various suggestions have been made for elimi-
nating one of these parameters.

The “single pole model”, where both the H∗ pole
and the continuum integral are represented by a single
pole that is allowed to float,

single pole :

F+(t) =
F+(0)

1 − t/m2
pole

,

(29)
is also ruled out by the data, although in a slightly
less direct way. Although the curve can be made to
fit, the pole position is forced to take an unphysical
value, significantly below both the H∗ pole and the
continuum. The “modified pole model”,

modified pole :

F+(t) =
F+(0)

(1 − t/m2
H∗) (1 − αpolet/m2

H∗)
,

(30)
holds a similar status. For D → K and D → π,
(25) and (26) clearly show that 1 + 1/β − δ ≈ 2 is not
valid for charm decays, as necessary for the motivation
for the simplification (30) proposed in [68]. Although
the form (30) can be made to fit the data, there is
no obvious physical interpretation for the resulting fit
parameter; in particular αpole obtained in this way has
no direct relation to the physical α defined in (27).

It should be kept in mind that unless there is a
physical meaning that can be given to the parameter
being studied, there is no guarantee that different ex-
perimental or lattice determinations will converge to
any one value for this parameter. It is therefore un-
clear what to make of discrepancies appearing when
different datasets are forced to fit models such as (29)
or (30) [69, 70]. The situation is especially dangerous
for comparing lattice and experiment, since the range
of t that is emphasized is different in the two cases.
These pitfalls are easily avoided by working with a
general parameterization such as (4) that is guaran-
teed to contain the true form factor, and by comparing
physical quantities, such as in (25), (26).

Table III Maximum |z(t, t0)| throughout semileptonic

range with symmetrizing choice t0 = t+(1−
√

1 − t−/t+).

Process |z|max

D → K∗ 0.017

D → ρ 0.024

B → D∗ 0.028

B → ρ 0.10

6.3. Testing convergence

The general parameterization (4) provides a system-
atic procedure for estimating how many terms should
be resolved by data at a given level of precision. Rig-
orous bounds are placed on the coefficients by using
crossing symmetry to analyze the production form fac-
tor, either via unitarity arguments, or through power
counting of contributions from different momentum
regions. Since the latter estimates yield constraints
that are so much more powerful than can be safely es-
timated by unitarity, it is important to check wherever
possible that large “order unity” numbers don’t ap-
pear. As illustrated by Table II, the available semilep-
tonic data reveal no surprises.

7. Decays of pseudoscalar to vector
mesons

Pseudoscalar-pseudoscalar transitions hold a priv-
eleged position, from a first-principles simplicity point
of view, from the lattice point of view, and from the
experimental point of view. Pseudoscalar-vector tran-
sitions, while accompanied by new complications, are
however important backgrounds to the pseudosclar
mode, provide alternative extractions of CKM param-
eters, and yield important constraints on radiative
and hadronic transitions. This section briefly outlines
the implementation of the ideas in Section 2 to the
pseudoscalar-vector case. 18

The most obvious complication is the multiple in-
variant form factors that accompany the vector parti-
cle. Less obvious complications involve modifications
to the analytic structure of the form factors due to the
unstable nature of vector mesons, and the possible ex-
istence of anomalous thresholds. When these occur,
they will encroach on the gap between the semilep-
tonic region and singularities. The effects of such

18There have been numerous studies aimed at reproducing
the P → V data by means of symmetry arguments or proposed
generating resonance structures [71, 72, 73]. The focus of the
present talk is on the extraction of physical quantities without
simplifying or model assumptions.
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Figure 9: Experimental data for helicity amplitudes in
D → K∗ℓν, from [79, 80]. Units on the vertical axis are
arbitrary (approximately normalized to unity at t = 0).

anomalous thresholds are not expected to be large,
and can be investigated on a case-by-case basis. 19 A
more complete discussion is beyond the scope of this

19For the case of B → D∗ℓν, see e.g. [7, 8].

talk and we ignore such complications here.

In heavy-to-heavy decays it is possible to relate
form factors by heavy-quark symmetry, making the
pseudoscalar-vector analysis not significantly differ-
ent, from the point of view of the number of inde-
pendent invariant form factors, from the pseudoscalar-
pseudoscalar case. For heavy-to-light decays, this sim-
plification is not possible; however, a new symmetry
emerges due to the large energy of the vector meson,
and the resulting suppression of the helicity-flip am-
plitude [43, 47, 74]. It is again important to take ad-
vantage of as much first-principles knowledge as pos-
sible. By the same variable transformation (3), the
invariant form factors may all be written in terms of a
convergent expansion in a small parameter governed
by the degree of isolation of the semileptonic region.
Table III shows the maximum size of the parameter
when t0 = t+(1−

√

1 − t−/t+), for processes involving
ground state heavy-light pseudoscalar mesons decay-
ing into the lowest-lying vector mesons.

The decay rate can be decomposed in terms of he-
licity amplitudes [75], 20

√
tH0

m2
H

=
(1 + m̂L)2(ÊL − m̂L

2)A1 − 2k̂2
LA2

m̂L(1 + m̂L)
,

H±
mH

=
(1 + m̂L)2A1 ∓ 2k̂LV

1 + m̂L
, (31)

where hatted variables are in units of mH , and EL

and kL denote the energy and momentum of the light
vector meson in the rest frame of the heavy pseu-
doscalar meson. The amplitudes

√
tH0, V and A1

correspond to cross-channel production of states with
quantum numbers JP = 1+, 1− and 1+, respectively.
On the premise of analyticity, these functions can be
expanded as in (4). For the choice of φ, we use the
form motivated by unitarity (although the evaluation
of the unitarity bound itself is not directly relevant).
Using the results of [9], at Q = 0,

φ√
tH0

(t, t0) ∝
√

t+ − t

(t+ − t0)1/4

(

z(t, 0)

−t

)5/2 (

z(t, t0)

t0 − t

)−1/2

×
(

z(t, t−)

t− − t

)−1/4

,

φV (t, t0) ∝ t+ − t

(t+ − t0)1/4

(

z(t, 0)

−t

)5/2 (

z(t, t0)

t0 − t

)−1/2

×
(

z(t, t−)

t− − t

)−3/4

,

φA1
(t, t0) ∝

√
t+ − t

(t+ − t0)1/4

(

z(t, 0)

−t

)2 (

z(t, t0)

t0 − t

)−1/2

20Form factor conventions are as in [47, 76].
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×
(

z(t, t−)

t− − t

)−1/4

. (32)

For the function P , we use for the resonances lying be-
low threshold: [77, 78] JP = 1− : m = 2.11, 2.63 GeV;
JP = 1+ : m = 2.46, 2.56 GeV. 21

Fig. 9 shows the resulting invariant form factors ex-
tracted from the nonparametric analyses in [79, 80],
after extracting the kinematic function Pφ, and trans-
forming to the variable z. The small size of z implies
that these functions should deviate from a straight
horizontal line by only a few percent over the entire
range. With this in mind, it is straightforward to
extract useful information in a systematic way. For
instance, we can test the O(ΛQCD/mc) suppression of
helicity amplitudes at t = 0: [equivalently, measure
the form factor ratio V (0)/A1(0)]

H+

H−
= 0.27 ± 0.06 [79]

0.37 ± 0.04 [80] , (33)

up to corrections of O(z).

8. Summary

There is interesting information lurking in the
semileptonic data, with applications to precision phe-
nomenology, and for exploring a poorly-understood
limit of QCD. As a practical matter, a simple and
well-known variable transformation provides a pow-
erful tool for analyzing and making full use of the
semileptonic data. The effectiveness of this transfor-
mation has been obscured by a reliance on unitarity
bounds, which were used as safe estimates in the ab-
sence of experimental data. Rigorous arguments for
a stronger convergence of the expansion (4) are now
available, and can be further tested and refined us-
ing experimental data from many semileptonic decay
modes.
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